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NONISOTHERMIC FLOW OF GAS MIXTURE IN i\ CHANNEL
AT INTERMEDIATE KNUDSEN NUMBERS

V.M. ZHDANOV and V.A. ZAZNOBA

Solution of the problem of gas mixture flow in a plane channel at intermediate
Knudsen numbers is considered on the basis of the 20-moment approximation as a
function of distribution. The applied method consists of averaging moment equations
valid throughout the flow region (including the Knudsen layers) with the determina-
tion of boundary values of macroscopic parameters on the wall using the approximate
Loyalka method /1,2/. Expressions are obtained for a binary mixture for the mean
molar velocity averaged over the channel cross section, difference of component
velocities, and the relative heat flux in the presence of longitudinal gradients of
partial pressures, and for the temperature gradients. Respective kinetic coeffic-
ients of the Onsager matrix are calculated. Dependence of these coefficients on
the Knudsen number, and the properties of molecule scatter on the channel wall are
analyzed in detail in the case of one-component gas and of a binary mixture with
small relative difference of mass and diameters of molecule scatter.

1. Consider a slow flow of gas mixture in a plane channel bounded at z = 4-d/2 by two
infinite parallel planes, assuming the existence in the 2z -direction of small relative grad-
ients of partial pressure ko = pgy 'dps/dz and temperature 1 = T,"'dT/dz. It is possible to seek
a solution of the distribution function of the form

fa(Vas 2, 2) = fao [1 + Koz + T2 (ﬁava’— %) + Du(va, z)] (1.1)

P, m
fao = g (ma/2kT o) exp (— Pava®)s  Rap= k;;‘?, v Ba= Z—k;o—

where subscript ( corresponds to parameters of the Maxwell absolute distribution, and Qg
an unbalanced addition to the distribution function, determined by the linearized kinetic
Boltzmann equation /3/

D 5
UaxT: + varka + Vol (ﬁavaz - T) = Z L@y (1.2)
B

Lap®a = § fpo (D’ + @ — Dy — Op)| vo — Vg [bdbdedvg

where the prime relates to velocities of molecules after collision.

The equations for moments of distribution function, which follow from (1.2) are used
below. We restrict our considerations to the set of moment equations that on passing to the
limit of continuous medium (the region of flow away from walls) correspond to the 20-moment
Grad's approximation /4/. In connection with this the right-hand side of equations is present-
ed in the form similar to the right-hand sides of moments obtaining by Grad's method /5/.
Actually this form of presentation is based on the equivalence of moments of the collision in-
tegral and of the exact Lqs®a and model [g?dh representations within the first N moment
equations /6—8/. Since the definition at the level of moment equations proves to be practic-
ally adequate for obtaining the required results, this method corresponds as regards accuracy
to the use of the true linearized Boltzmann operator of collisions.

Multiplying successively (1.2) by Yy (ca) exp (— cq?), where Yo = €asy Ca; Caj — Y 3a®d;jy oy (Co® —
¥,) and caiCaiCar — Y 5Ca? (Caibs + Cadix + €ardy;), and e, = Bu/ve, and integrating with respect to
velocities, we obtain for the plane geometric problem considered here moment equations of the
form
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a kT orq0mp0 [ by, th ]
a—IPaxz—}'Paoka——;[m(uaz—uﬁz) -+ Eap Tigtay  gige (1.3)
o (m S L2 h —_ 2 APz
3z wwazxx T TE az T Palla:z) == — Po _— (1.4)
b,
B Bo
2 4 5 kT 2 bah
‘TW (Hazxxx + Hazxuu + Hauzz - "'2_ paxz> + PagT = — m—o' Z Eaﬁ (uaz —_— uﬂz) — % Z —(% (l- 5)
(22
8
a 25 2 d
W(4Hazxxx—ﬂmw—ﬂmu):——4-—‘;"—z.M_ (1.6)
° T Ppo
a 25 3 d_omgs
- (4nmw—nam—nm)=—T”T‘;Z% (1.7)
0
Sazex + Sozyy + Sazzz= 0 (1.8)

where uq: is the mean velocity of the mixture component a, pax: is the partial tensor of vis-
cous stresses, and hg: is the partial relative heat flux. Their expressions and, also, those
for moments of the third Sy and fourth Ha”-k, order are of the form

(2Pa0) ™ Cai
Uai ﬂzzl’ (Caicaj - %Cazsﬁ)
Puaij
hai = 2pg 5 ms g Tz (:az - T> Dg exp (— ca®) deg, {1.9)
MaSaijk " || €aiCajCar — 5= ca? (Caidix +
Mo Caidix ¢ axdij)
B caiaicartar

In Egs. (1.3)— (1.7) [Dggl; = 3kT/(16nguapQeg'’) corresponds to the first approximation of
the coefficient of interdiffusion of the binary mixture of @ and f molecules /9/, and coeffic-
ients  Eup, Gaps bag wWere determined in /5/, where the moment equation was given in the ap-
proximation of 13 moments. For new coefficients appearing at passing to the 20 moment approx-
imation respective calculations yield

9 ¥e? 4 T Ya¥p 15 2%
Ao — — —2 ——"Z———————,, (——.—m2 ImampAX 2 mg2D, *)
T L Thggh | 25 Po e (Mg + mgl Dggh V2 ¢ + ImampAap -+ — mg*Dagp
_ 4 Ty meMelalp < 15 * 24 % .
dot = = 35 5 G e (g (2 A% + 7 Di) Be
e g 22 * 503, — 35
Yo=Tm SeThout TR T T o

where Yo is the relative molar concentration of the mixture o component and Q,p? corresponds
to the Chapman—Cowling integrals /9/.

Away from the walls the system of equations must correspond to the usual 20 moment Grad's
approximation /4/. For the unbalanced addition to the distribution function in this region we
obtain, with allowance for the smallness of quantities Ui, Pax: He: Seijx the formula

(Dan (cav 1) = 2‘3;2 (u'za + wgu) Caz 1+ 2P;5P:xzca.xca.z + (1.10)

4 piy -13a 5 e —1 a 2 a2 ] a a a
5 ﬁo{ paohazcaz Co2 — = ) + zﬁofzpaoma (Sazxxcocx - SazyyCoy -+ 1’3Sauzcaz)v Weoy == Ugy— Uz

where u, is the mean-mass velocity of mixture and superscripts ¢ denotes asymptotic values of
respective quantities, i.e. values outside the Knudsen layer.

Substituting (1.10) into Ilgj;u of (1.9) and integrating with respect to velocities we
obtain
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ngxxx == 3/217;::17 ngzxyy = l/ngxzv Hg;zxzz = 3/2pgxz (1.11)

Solution of the system of Egs.(1.3)— (1.8) with allowance for (1.11) and the problem sym-
metry relative to the longitudinal axis of the channel ((Da (x, Coxy Cap Cuz) = @y (— x, — Caxy Cays
c«:)) enables us to obtain explicit expressions for Wazy Paxs hoz sa,,,;,

In the case of a binary mixture (a, p = 1,2) the respective solutions are of the form

[Dyplap,
wg, = (—1)* pocﬁ o ( —= Y1+ Ya¥p [otple jos dz + (1.12)
(1 llp
N dp
yayB[aT]lTU dz )' p#a; ngz(f) ——I—;—L—ﬁ
a 5 dgPo 2Toyg - dp . dT
az:——2~ [DaB]2 dz y1+ 5o Iblap —_— }"a ) ﬁ*a
16y T0 d I 3 N
s:z” = m @ d_lz, ? s:-llill = & s;zuv S:zu - % Sazex

Po= 2 Pagr  Pap = Mallao: | b | =bubss — b1oba
o

Moo= A+ aayinek Dy, larl,
Ay = Ay + Saagyanok (D, lar],

’ _ 25
otp1 = (baa1 — byeme) N — % asnok | b | [Disle [ople
, 25
Otpa == (b1iMe — baath) N2 — - Benoke | b} [Diala [2p)e
8, = (dogMy — dome) (M 1 4 |)7Y, 8y = (e — dimy) (0 [a™

_ 285, by | ba 2 bu | bie
= — gty (et ) =gt (o + )

1ol g . $_ Ot __mym,
Se=-—p T ENT2SN Hm( Cre* 1) Cre* = 3Q011 ? Pz = my + m,

Expressions for partial coefficients of viscosity mq and thermal conductivity Aa and,
also, for the second order interdiffusion coefficient {Dyl,, and for the baro- and thermo-
diffusion constants [apl, and [arl, are given in /5/.

2. Let us now obtain the averaged over the channel cross section expressions for the
relative heat flux, the difference of velocities of mixture components, and for the meanmolar
velocity of the mixture.

summing (1.3) over @ and integrating with respect to &z, we obtain for p,, (7)

d
px:(x)_”‘x‘d—’:; Px:=2paxz, p=2pa (2.1)
3 o«

that is valid throughout the flow region.
Expressions for pa., (z) are obtained from the solution of Egs.(l.4). The substitution
of these expressions into (2.1) and integration of the obtained relation with respect to <z

yields o Z Nalo {ma [Sazxx (€) — Sazxx <%>] + % [hw(z) — ha (%)] +

Pao Luaz(x) — Uqz (%ﬂ} = %(.’tz —-—d[‘i) %—

We average Egs.(1.3), (1.5), (1.6), and (2.2) over the channel crogs section. As the
result we have

(2.2)

oz <ha,>
— — B N
ZI [Yayppo [Dapli’ ((Uaz) — Cuped) + Eap ( [N mgngg ) ] =HKa (2.3)
kT bop Uiag>
—= Zgaﬂ(<uaz>_<uﬁz)) ;Lﬁ%oﬂ_zlfaz (2.4)
5 pg daﬁmﬁ Spaxx”
~5 T ——Pﬁo = Ko (2.5)
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Py Z' "pYs (mﬂ {Spaxzd + = <hﬁz> 4 DPgo <uﬁz>) (2.6)
3

A

N
Hazxyy( ) + Haz:rzz( 4 )— 3 Paxz< >—t + PagT

Ko & [l ) o () s (4]

Ki=p;' 2 Ngyp' [mﬂsﬂzxx (—‘2*-) + ~§— by, <%> -+ Ppoltp: <%)] _ @& dp
3

Koy=—- 2 paxz( )+Pa0kav Kop =

12 dz
moreover,
1 a“w
(Qa>=— \ Qo (z)dx
—~dj2
In the case of a binary mixture the solution of system (2.3)— (2.6) yields
ey == (i) + Chapd = — [Kui [Dasla [arh + Tobg' (Kuht'y1 + Kooho'ya")] (2.7
D
1y — (Ug) == Lo;gjz [K + = (K12a1+K22a2)-{

_ 2T, . . -
Clnsd = 11 22> + ya {@a> — — K1y Dol [etp]a + 261 (K1n0tpy + Kayorgg) -+ '%% (K1381 + K230:) + Kan™
%

0

3. For the determination of unknown quantities on the channel wall we use the approxi-
mate method /1/. It was shown in /1,2/ that the application of that method corresponds to the
simplest choice of the trial function within the more general variational method developed in
/10/.

We introduce the distribution function of incident and reflected molecules so that @y =
@, when ¢ >0 and @y = Dy~ when cax << 0,4y >0 correspond to the positive direction of the
z axis. In conformity with (1.10) and with allowance for the usual Maxwell condition of mole-
cule reflection on a wall, for function @y* at z = d/2 we have

(3.1)
() ) (ca, d/2) = ZBah(a + wgz) Caz + 2p;ﬁp§xz (d72) CoxCaz

‘/sﬂl‘p&éhm%z (caz — s'/2) -+ Zﬂ(,{‘p;éma (S;zxxcozzx -+ ngzyycgcu -+ 1/3Sgnzzzcgzz)
Dy (e, d/2) = (1 — %a) Vo’ (— Coxs Cayr Cazr 472)

where ux, is the fraction of molecules that have undergone diffusion reflection on the wall,
and u,®(d/2) is replaced by an arbitrary constant a.

Using condition (2.1) and the definition of pgx, on the wall, after the calculation of
respective integrals with (3.1) taken into account, we obtain the constant a expressed in terms
of concentration, temperature, and pressure gradients

v =1L o N
a = — (Z%Gﬁ;{zpaﬂ) [’1/1—11 <]__:1; k %a”a)“gﬁ’— ‘{" 2‘”aﬁ;{z (pao“';z '1 %/1;2 =+ 5 Saz:\x ] (3'2)
o [+ 4 a
whose substitution into (3.1) yields the unknown quantities on the channel wall appearing in
K;x« As the result the considered here quantities of streams are expressed in the form of
linear combinations of respective thermodynamic quantities.
According to the thermodynamics of irreversible processes for discontinuous systems /11/
the relation between streams and gradients can be represented thus

| -2 dT 'l
dz
ChyYy [A\qq 1\,11 \qm p l -
Uy = Wa == — Ay, M A pT™! s )
<”m:> l\ Amq ~\m1 "\mm et (’l l\

dz i
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The general expression for the kinetic coefficients A;; obtained by comparing (3.3) and
(2.7) are of the form

pua— BT [y DBl (7 4 120100t + 1270

Pol1¥z 2 V nidpgnyz (3.4)
Dol 1 .
Alm=Am1=M {[Gplz + m;[fh@—“l) Fy—
BT\T
Mo (2—%2)Fz] —m[l)m]z[ap]zt+
2Ty (7o Fa— Todd o F
ETEOTTS Py Topal's) +
_8BTe (8,7 \Fy—8:ToF
25 V‘”dptﬁ'hyz( e e 6) BIT
A= A8g=[DulTo [[O‘Tll - —Vm [Diela forh ¢ —
BT, '
BT (piyphFs— Tayh'F ]
5V ndmoty e (T1y2M'Fs 291" Fa)
A, .—:Tozx'_ﬁ%fi[umm [arh® — (3.5)
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2BT P ’ "o
_CPl (13 —T) Tyt (M2 —2T,T Ai'he 4
EETTEER [ 1) T1y=* (M) 1T ay1yaha"Ae"
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__ Ty | T [ VEep O oy, (2 %) (Tla 7,
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8BT 2T, T 1
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4. consider the case of the one-component gas (y; = 1)

S = — /\ T g dT _ \ T_l dp

({0
dT o dp
<u’2/ = \qu 2_~‘ \mmT l%

Using (3.5) we obtain

. ATy [ Kn=t 2 —w) /1 2—% ¥Vn 5xKn  3x Kn?
— - o A Yo _ 3=
Amm =P 7o { T ( Va % ) 12 2V =

AqmzAmq:ﬂ"/:dTO[ =2+ Kn £ V‘ Kn“]

it 15 .- 27% {n ]
= /2 — J— 2 1
Aqq § dTOpo( 3 Kn SVa Kn ) Kn= e

where [n]; is viscosity coefficient that corresponds to the first approximation of the expan-
sion in Sonin polynomials in the Chapman—Enskog method /9/.
We introduce the dimensionless gquantities

To* = T l(mJ o) = 2B Cuy,  J % = J J(kToJ o) = 28:p5t <R

where J,, and J are the respective averaged mass and heat fluxes per unit of channel cross
section, and Jo = no/(2ﬁ/) , moreover

Jo* = — Lypgihtd — Lypgtd, J* = — Lynkd — Lygd

In the case of fully diffused reflection (x = 1) these coefficients assume the form

me,——_;—Kn’l—f— (}—}———Kn—TKnz
15
Vﬂ Kn2, qu=—4 Kn — Vﬂ

-Kn?

Lygy=Lgn=-—arKn-+

where o=1/)n+ YV 7/4—=1.0073 and ar=="/; are the viscous and thermal slip coefficients whose
values coincide with those obtained by the variational method in /10/.

For comparison we adduce the respective values of kinetic coefficients obtained in /12/,
where second order slip effects (which corresponds to using the Barnett term in the expansion
of the distribution function) were taken into account. When =z =1 we have

Lom = iKn”l—Q—S—{-iKD—«—-Q—_—KnZ

6 2 V=
15 27
TR ya

It will be seen that the discrepancy in coefficient L,.,,, which defines the isothermal
Poiseuille transport of gas in the channel, begins with the term ~ Kn or ~Kn? relative to
the conventional Poiseuille term of order Kn-!. In cross coefficients the discrepancy ap-
pears already in the term of order Kn relative to the term that defines thermal slip of gas
in the channel. Analysis shows that this discrepancy is entirely due to the incorrect choice
in /12/ of the Barnett term structure taken there by simple analogy with its formin the part-
icular case of the BGK model (by substituting 2/3 for 1 for the Prandtl number). However, it
follows, for instance from /13/ that even for Maxwellian molecules the form of that term is
more complex. In the case of arbitrary law of interaction the respective structure of the Barnett
term is revealed by expansion (1.10) with the formof &3, and sZ., taken into account for a one-
component gas.

Owing to the unwieldiness of expression for Aj; in the case of a mixture, we shall analyze
only those coefficients that appear in the expression for the diffusion flux (or the differ-
ence of component velocities averaged over the cross section) in the channel, sinceitis these
coefficients (and the equal to them cross coefficients in expressions for <k;) and  (up;))
that basically define the specific properties of phenomenon arising in investigations of gas
mixtures.

Let us represent {u;,> — {Uy;> in the form

Kn?

9
Lmq = Lqm =—ag Kn—{—mKn“, qu =



Flow of gas mixture in a channel 807

Dy,
Y2

U1,d — (Uog) = — dT)

d -1 d -
(7; Y1+ y1ypho’ ‘d% + Yy T5' —

The coefficients of diffusion, baro- and thermodiffusion are then linked to respective
coefficients A;; by the relations

Dyy = AuysyapeTs"s  Disoty = AipboT5"  Dygar = Ay T

Note that in (3.4) and (3.5) the terms A;, containing d™ (d is the channel width) are
of the order of the Knudsen number. Coefficients D;, and or coincide with [Dyl, and [az],
as Kn — 0. Expression for the constant of barodiffusion a, differs from parameter leey], as
Kn — 0 from that in /5/ by the additional term dependent on the nature of scattering of mole-
cules on the wall. When x, =%, =1 (fully diffused scattering) the formula for @, may be re-
duced to the form /14/

ap = Yy (lagly + apk)

v Vme —Vim) — 0.5 (@ V' + a0 Vi)
ap == — —

r Vmy 4V my,

To illustrate the dependence of Dy, ®p, @y ON the properties of molecules, the Knudsen
number, and the nature of molecule scatter on the wall we consider a mixture with a small
relative difference of masses and diameters of scatter of component molecules ((m, — m))/(m; + m,)
<1 and (0, — 6))/(6, + o) <€ 1) using solid balls of diameters oy, o;, respectively, as models of
molecules. Taking also into consideration the possibility of small difference in the coeffic-
ients of molecule reflection on the wall, after simplification of respective formulas (for a
mixture with y; = y, = 0.5), we obtain

Dy = [Dyple(1 — 0.6523% Kn),

Dy, = [Dyalke {[1.1441+x(0.1303—1.3152 Kn)] gr'n” 4
- As
[0.0678 — % (0.6653 — 1.6704 Kn)] - +

[1.9322 — x (0.0339 — 0.1785 Kn)]—g-:—-}

: A
Dydiq = — [Dyel: L(O.SSQS —1.1144xKn) 5

As Ax
(0.3390 — 0.3086% Kn) 55~ +0.3443xKn |

A_m__ my—my __Ai_ Gy — 51 Ax L %

2m T mg-tmy 23 T Gyt ! 2% T ety
5Vn ~

Kn= 1;3 (V2 mngstd)=t

As previously indicated D,; — [Dyls, ap—{apl; as Kn—0. As regards ap, when Kn—0 then
for x=1 we have /14/
As

., Bm -
oy = 1.2744 T — 0.5675 55

Note that in the formula for (eply in /5/ the respective coefficients are 1.405 and
1.263. Thus the allowance for Knudsen layers in the channel in the calculation of ¢ as
Kn — 0 yields a twice weaker dependence on the relative difference in transverse collisions of
molecules, and virtually little changing dependence on the difference of mass of component
molecules.
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