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NONISOTHERMIC FLOW OF GAS MIXTURE IN A 
AT INTERMEDIATE KNUDSEN NUMBERS* 

CHANNEL 

V.M. ZHDANOV and V.A. ZAZNOBA 

Solution of the problem of gas mixture flow in a plane channel at intermediate 
Knudsen numbers is considered on the basis of the ZO-moment approximation as a 
function of distribution. The applied method consists of averaging momentequations 
valid throughout the flow region (including the Knudsen layers) with the determina- 
tion of boundary values of macroscopic parameters on the wall using the approximate 
Loyalka method /1,2/. Expressions are obtained for a binary mixture for the mean 
molar velocity averaged over the channel cross section, difference of component 
velocities, and the relative heat flux in the presence of longitudinal gradients of 
partial pressures, and for the temperature gradients. Respective kinetic coeffic- 
ients of the Onsager matrix are calculated. Dependence of these coefficients on 
the Knudsen number, and the properties of molecule scatter on the channel wall are 
analyzed in detail in the case of one-component gas and of a binary mixture with 
small relative difference of mass and diameters of molecule scatter. 

1. Consider a slow flow of gas mixture in a plane channel bounded at x = td/2 by two 
infinite parallel planes, assuming the existence in the z-direction of small relative grad- 
ients of partial pressure k, =paoP1dpddz and temperature T = To-‘dTldz. It is possibleto seek 
a solution of the distribution function of the form 

(1.1) 

fao =n,o(m,/2nkTr)‘~s exp(--B,Q), nmp=s, Pa=& 

where subscript 0 corresponds to parameters of the Maxwell absolute distribution, and @,a 
an unbalanced addition to the distribution function, determined by the linearized kinetic 
Boltzmann equation /3/ 

(1.2) 

where the prime relates to velocities of molecules after collision. 
The equations for moments of distribution function, which follow from (1.2) are used 

below. We restrict our considerations totheset of moment equations that on passing to the 
limit of continuous medium (the region of flow away from walls) correspond to the 20-moment 
Grad's approximation /4/. In connection with this the right-hand side of equations is present- 
ed in the form similar to the right-hand sides of moments obtaining by Grad's method /5/. 
Actually this form of presentation is based on the equivalence of moments of the collision in- 
tegral and of the exact &p& and model @&D, representations within the first _W moment 
equations /6-8/. Since the definition at the level of moment equations proves to be practic- 
ally adequate for obtaining the required results, this method corresponds as regards accuracy 
to the use of the true linearized Boltzmann operator of collisions. 

Multiplying successively (1.2) by $I~ (c,J exp (- c,"), where 9, = cai, cai caj-1/$a26ij, c,* (c,~- 
"1,) and c,~c,~c~~- '/braa (c,~S~S i-corjSi&G&j), and Ca = &"'vcrt and integrating with respect to 
velocities, we obtain for the plane geometric problem considered here moment equations of the 
form 
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(1.3) 

(1.4) 

(1.6) 

(1.7) 

(1.8) 

where uaz is the mean velocity of the mixture component a, Parr is the partial tensor of vis- 
cous stresses, and h,* is the partial relative heat flux. Their expressions and, also, those 
for moments of the third Sa;jk and fourth IIaijkl order are of the form 

1 
aicujcak - T Crza (Caiajk $ 

'&j&k + C aksi j) 
B ‘1. 

a CaiCujCakCal 

aa exp (-- ~2) dc, (1.9) 

In Eqs.(1.3)- (1.7) [D,B], = 3kT,/(16n,~~,~Q,~~~) corresponds to the first approximation of 

the coefficient of interdiffusion of the binary mixture of c( and /?I molecules /9/, and coeffic- 

ients Le, a,g, b,B were determined in /5/, where the moment equation was given in the ap- 

proximation of 13 moments. For new coefficients appearing at passing to the 20 moment approx- 

imation respective calculations yield 

where ya is the relative molar concentration of the mixture ct component and Q&:9 corresponds 
to the Chapman-Cowling integrals /9/. 

Away from the walls the system of equations must correspond to the usual 20 moment Grad's 
approximation /4/. For the unbalanced addition to the distribution function in this region we 

obtain, with allowance for the smallness of quantities u&P&,, k& szijk the formula 

Q),"(c,.z)= 2@(uz" + &)Car + 2PL%&&zz + 
(1.10) 

$ Bb'P~h:,c,,(c&+) + 2~~p,$rk&(s&&2,, _1- S:iyyC;,,-k '/&,,&, wt= U",,- u, 

where U, is the mean-mass velocity of mixture and superscripts a denotes asymptotic values of 
respective quantities, i.e. values outside the Knudsen layer. 

Substituting (1.10) into nIaijki of (1.9) and integrating with respect to velocities we 
obtain 
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Solution of the system of Eqs.(1.3)- (1.8) with allowance for (1.11) and the problem sym- 
metry relative to the longitudinal axis of the channel (@,,(s, car, c~, k)= @a(-~, - CCCX, Cay, 
c,,)) enables us to obtain explicit expressions for &z, p&xl, h:z, S&k. 

In the case of a binary mixture (a, p = 1,2) the respective solutions are of the form 

a$*=(- V*(& y1 + yayslapla POl$ + (1.12) 

YaY&+l&~ I 
1 

b#a; p&.(r)=-*+$ 

5 %Po d ~ToY, 
h&------~~.812~Y~+ Sp,,b, 

2 YP 
-a&~-hh$-, fi#a 

s&x = 25p,m, 
= 6, -g , s;,,, = - -+ sgzn, s&, = - -g SE, 

po = x pm, pao = nlanao, ) b I= h&z - h&u 
a 

Expressions for partial coefficients of viscosity na and thermal conductivity h, and, 

also, for the second order interdiffusion coefficient lD,,Iz , and for the baro- and thermo- 

diffusion constants [a,], and [aTI, are given in /5/. 

2. Let us now obtain the averaged over the channel cross section expressions for the 
relative heat flux, the difference of velocities of mixture components, and for the meanmolar 
velocity of the mixture. 

Summing (1.3) over a and integrating with respect to X, we obtain for p,,(s) 

(2.1) 

that is valid throughout the flow region. 
Expressions for paxz(x) are obtained from the solution of Eqs.Cl.4). The substitution 

of these expressions into (2.1) and integration of the obtained relation with respect to X 
yields 

P~lr,I1,Y-di:n,[s,,,(z)-sSLIlrr(~)] ++[h,&,-h~,(~)]+ 
(2.2) 

Pno~~~~(“)-“~~(~)l}=$(58-~)~ 

We average Eqs.(l.3), (1.51, (1.6), and (2.2) over the channel cross section. As the 
result we have 

(k& 
- x IY~YPPO IDcal;’ (<J.& - (uaz>) + Ea, ($ - %I] = Km (2.3) 

R 
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(2.6) 

moreover, 
d/z 

(Qa) =$ \ Va(s)dx 
-dn 

In the case of a binary mixture the solution of system (2.3)- (2.6) yields 

3. For the determination of unknown quantities on the channel wall we use the approxi- 

mate method /l/. It was shown in /1,2/ that the application of that method correspondstothe 

simplest choice of the trial function within the more general variational method developed in 

/lO/. 
We introduce the distribution function of incident and reflected molecules so that c&= 

D,,' when calr > 0 and % = %- when c,,< O,c,,>O correspond to the positive directionofthe 

x axis. In conformity with (1.10) and with allowance for the usual Maxwell condition of mole- 

cule reflection on a wall, for function CD,* at x = d/2 we have 

(3.1) 

where x, is the fraction of molecules that have undergone diffusion reflection on the wall, 

and u," (d/2) is replaced by an arbitrary constant a. 

Using condition (2.1) and the definition of pall: on the wall, after the calculation of 

respective integrals with (3.1) taken into account, we obtain the constant a expressedinterms 

of concentration, temperature, and pressure gradients 

whose substitution into (3.1) yields the unknown quantities on the channel wall appearing in 

Kik. As the result the considered here quantities of streams are expressed in the form of 

linear combinations of respective thermodynamic quantities. 

According to the thermodynamics of irreversible processes for discontinuous systems /11/ 

the relation between streams and gradients can be represented thus 

(3.3) 
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The general expression for the kinetic coefficients .Ai, obtained by comparing (3.3) and 

(2.7) are of the form 

(3.4) 

$ $- 46,) [pT, - (I- x,) f]] + 
a 

(3.5) 
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4. Consider the case of the one-component gas (y, = 1) 

Using (3.5) we obtain 

A,, = (2 -xl 
2 

Aq, = p-‘/:! dT,p, 
i 

-+n-~l<,,~ 
al’, 

where 1~1, is viscosity coefficient that corresponds to the first approximation of the expan- 

sion in Sonin polynomials in the Chapman-Enskog method /9/. 

We introduce the dimensionless quantities 

J,*=J,/(mJ,)= Z8'/z:u,), J,* = Jy/(kToJo) = 2fWp;’ (h,) 

where J, and J, are the respective averaged mass and heat fluxes per unit of channel cross 
section, and J, = n,/(2P'i3 , moreover 

Jm* = - L,,kd - L,,Td, J,* = - L,,kd - L,,_rd 

In the case of fully diffused reflection (x = 1) these coefficients assume the form 

L ,,,,-$Kn-‘+ o++Kn--&Kna 
JI 

L,,=L,,=--rKn+AKna, L,,=qKn-&Kna 
zl/n 41/n 

where a=~/~~+l/&=~.0073 and aT='/s are th e viscous and thermal slip coefficients whose 

values coincide with those obtained by the variational method in /lo/. 

For comparison we adduce the respective values of kinetic coefficients obtained in /12/, 

where second order slip effects (which corresponds to using the Barnett term in the expansion 

of the distribution function) were taken into account. When z= 1 we have 

L = mm 

It will be seen that the discrepancy in coefficient L,,, which defines the isothermal 

Poiseuille transport of gas in the channel, begins with the term -KU or -Kna relative to 

the conventional Poiseuille term of order Kn-' . In cross coefficients the discrepancy ap- 
pears already in the term of order Kn relative to the term that defines thermal slip of gas 

in the channel. Analysis shows that this discrepancy is entirely due to the incorrect choice 

in /12/ of the Bamett term structure taken there by simple analogy with its forminthe part- 

icular case of the BGK model (by substituting 2/3 for 1 for the Prandtl number). However, it 

follows, for instance from /13/ that even for Maxwellian molecules the form of that term is 

more complex. In the case ofarbitrarylaw ofinteractiontherespective structure oftheBarnett 

termis revealed by expansion (1.10) with theformof I& and szijk taken into accountfora one- 

component gas. 
Owingtotheunwieldiness of expression for ‘bk inthecaseofa mixture, we shall analyze 

only those coefficients that appear in the expression for the diffusion flux (or the differ- 

ence of component velocities averaqed over the cross section) in the channel, sinceitisthese 
coefficients (and the equal to them cross coefficients in expressions for (hz) and (u,,>) 
that basically define the specific properties of phenomenon arising in investigations of gas 

mixtures. 
Let us represent (ulz)- (uzz) in the form 
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(UlZ> - oh) = - +g (& Yl + YlYGpPO’ g + YlYaaTT,’ S) 

The coefficients of diffusion, baro- and thermodiffusion are then linked to respective 
coefficients Ai, by the relations 

DI, = ~l,yly2poT~1~ Dlza, = hl,,,~J’,?, &aT = AlqTgl 

Note that in (3.4) and (3.5) the terms Ai, containing d-'(d is the channel width) are 
of the order of the Knudsen number. Coefficients D,, and ar coincide with [D,,], and [ar]r 
as Kn--tO- Expression for the constant of barodiffusion al, differs from parameter [a,], as 
Kn -0 from that in /5/ by the additional term dependent on the nature of scattering of mole- 
cules on the wall. When x1 =x2= 1 (fully diffused scattering) the formula for up may be re- 
duced to the form /14/ 

up = '1, ([apI, + apk) 

To illustrate the dependence of Dl,,ap,aT on the properties of molecules, the Knudsen 
number, and the nature of molecule scatter on the wall we consider a mixture with a small 
relative difference of masses and diameters of scatter of component molecules ((n~z-m,)/(m,+m,) 

<I and (% - a,)/(% + oI) 4 1) using solid balls of diameters u,,o,,respectively, as modelsof 
molecules. Taking also into consideration the possibility of small difference in the coeffic- 
ients of molecule reflection on the wall, after simplification of respective formulas (for a 
mixture with y,= Yz= 0.5), we obtain 

D,2 = [D&1 - 0.6523x Kn) 

Dq,=[D& [1.1441+x(0.1303-1.3152Kn)]~+ I 

[0.0678-x(0.6653-1.6704Kn)&+ 

[1.9322-x(0.0330-00.1785 Kn)]$) 

D,,aT ~-[0~~]~((0.8898-~1.1114xKn)~+ 

(0.3390-0.308GxKn)$+0.3443xK+ 

Am mp-nlm, A0 CI - 5, AX 
-- x2-x1 
Lm - ma+m, ’ ~ 25=- 02 +% ’ 2x=x,s-x, 

I(,, = + (v/” nn,g,j)-l 

As previously indicated Dll-[D12]2raT-[aT]1 as Kn-+0. As regards a,, when Kn-0 then 
for x=1 we have /14/ 

Note that in the formula for ]a~]~ in /5/ the respective coefficients are 1.405 and 
1.263. Thus the allowance for Knudsen layers in the channel in the calculation of ep as 
KI,-0 yields a twice weaker dependence on the relative difference in transverse collisionsof 
molecules, and virtually little changing dependence on the difference of mass of component 
molecules. 
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